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Figure 1: Overview of Notelt. (a) A user drags an instructional video from an online resource into Notelt’s web interface. (b)
Notelt processes the video in the back end and generates interactive notes, which are displayed within the same interface. (c)
The video hierarchy shows the chapter-level and step-level structures of the video, and corresponding notes are visualized
as a navigable graph for quick access. (d) Users can customize the note representation according to their preferences and
needs: (d-1) An interactive version includes detailed workout steps with GIFs to support direct follow-along. (d-2) A printable
version enables users to bring a simplified note to the gym. (d-3) For users already familiar with the workout, a concise version
highlights only the key steps emphasized by the video creator.

“Both authors contributed equally to this research.
t Corresponding author.

republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2037-6/2025/09
https://doi.org/10.1145/3746059.3747626


https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3746059.3747626

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

ABSTRACT

Users often take notes for instructional videos to access key knowl-
edge later without revisiting long videos. Automated note gen-
eration tools enable users to obtain informative notes efficiently.
However, notes generated by existing research or off-the-shelf tools
fail to preserve the information conveyed in the original videos
comprehensively, nor can they satisfy users’ expectations for di-
verse presentation formats and interactive features when using
notes digitally. In this work, we present Notelt, a system, which
automatically converts instructional videos to interactable notes
using a novel pipeline that faithfully extracts hierarchical struc-
ture and multimodal key information from videos. With Notelt’s
interface, users can interact with the system to further customize
the content and presentation formats of the notes according to
their preferences. We conducted both a technical evaluation and a
comparison user study (N=36). The solid performance in objective
metrics and the positive user feedback demonstrated the effective-
ness of the pipeline and the overall usability of Notelt. Project
website: https://zhaorunning.github.io/Notelt/.

CCS CONCEPTS

« Human-centered computing — Interactive systems and
tools.

KEYWORDS

note generation, multimodal learning, video understanding, multi-
modal large language model

ACM Reference Format:

Running Zhao, Zhihan Jiang, Xinchen Zhang, Chirui Chang, Handi Chen,
Weipeng Deng, Luyao Jin, Xiaojuan Qi, Xun Qian, and Edith C.H. Ngai.
2025. Notelt: A System Converting Instructional Videos to Interactable
Notes Through Multimodal Video Understanding. In The 38th Annual ACM
Symposium on User Interface Software and Technology (UIST ’25), September
28-October 1, 2025, Busan, Republic of Korea. ACM, New York, NY, USA,
18 pages. https://doi.org/10.1145/3746059.3747626

1 INTRODUCTION

Instructional videos are visual media designed to demonstrate how
to perform specific tasks step by step, covering a wide range of top-
ics, including repair, fitness, cooking, handcrafts, first aid, and many
more. In these videos, domain experts share detailed explanations
and invaluable experience through various forms of representation
(e.g., narration, demonstrations, and visual highlights), making in-
structional videos a widely popular medium for learning physical
tasks [12, 77]. Taking notes facilitates knowledge construction from
instructional videos by retaining essential information [4, 20, 78],
enabling learners to quickly review knowledge without the need
to rewatch the entire video. However, manual note-taking can
be time-consuming and cognitively demanding, prompting both
commercial products [17, 38] and Human-Computer Interaction
(HCI) researchers [57, 71, 72] to explore automatic note genera-
tion methods. Despite these efforts, generating high-quality notes
automatically from video content remains a significant challenge.

Instructional videos often exhibit a flexible hierarchical structure
as the task taught in the video may be organized either sequentially
or in parallel [6, 30, 41, 70]. For example, in a first aid task, steps
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such as opening the airway, checking breathing, and chest compres-
sions must follow a fixed sequence, whereas chest-strengthening
exercises, such as push-ups, bench presses, and dumbbell flyes, can
be undertaken in any order. This structure becomes increasingly
complex when a task involves both sequential and parallel compo-
nents, further complicating the interpretation of the overall task
flow. For example, when assembling a cabinet, components such as
drawers, doors, and frames can be assembled in parallel, as there is
no strict requirement for their order; while, the assembly of each
individual component must follow a specific sequence, and there is
also a defined order for integrating these components into the final
structure. Due to the inherently linear nature of video presentation,
it is challenging to accurately model or summarize the complex
underlying hierarchical structure of such physical tasks by simply
analyzing the video timeline.

Furthermore, as physical tasks often involve critical details, con-
tent creators would employ various verbal and visual cues to better
convey key information [13], such as verbal emphasis, text over-
lays, graphic and diagram annotations, and close-up shots. While
this multimodal presentation aids human comprehension, it poses
challenges for automated systems attempting to accurately capture
all key information intended by the content creator. For instance, in
first-aid videos, a critical instruction like “only do this if the person
is unconscious” may appear briefly as an on-screen text overlay,
requiring both contextual and visual understanding. Similarly, a
repair video might visually highlight a small component with a red
circle while simultaneously providing a verbal warning about its
fragility. The multimodal nature of instructional videos highlights
the need for note-generation systems that can jointly reason across
visual, verbal, and textual content of videos.

Multimodal large language models (MLLMs) have demonstrated
impressive capabilities in video understanding and reasoning tasks
[7, 80, 81], and their zero-shot generalization enables them to han-
dle a wide range of video inputs and objectives without task-specific
supervision [79]. However, directly prompting MLLMs to summa-
rize instructional videos falls short of capturing the nuanced struc-
ture and critical content inherent in these videos. MLLMs typically
lack structure awareness, generating flat summaries that overlook
step-by-step logic and the presence of parallel and optional steps.
Moreover, MLLMs may struggle to align visual and verbal modali-
ties, failing to detect key visual-only cues like silent brush strokes
in a makeup tutorial or tool orientation in a first-aid demonstra-
tion. These limitations highlight the need for a dedicated pipeline
designed to handle the structural, temporal, and multimodal com-
plexities of instructional video content.

Another important challenge lies in the presentation of the gen-
erated notes. In practice, users vary widely in their preferences for
consuming instructional content. For example, novice users learn-
ing cooking or first aid may prefer detailed, step-by-step instruc-
tions, while more experienced users following a fitness routine may
favor concise summaries. Moreover, some users prefer text-only
notes for quick reading, whereas others find text-image formats
more immersive and effective, especially in visually oriented do-
mains like makeup tutorials. Preferences regarding engagement
mode also differ among users; some favor static printable notes for
immediate consultation, whereas others prefer interactive notes
that reveal content via collapsible or hover-to-reveal elements to
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ease cognitive load, as in device repair guides that conceal detailed
steps until expanded. However, current MLLMs typically gener-
ate unstructured, free-form text, lacking the flexibility to support
multiple presentation styles, levels of detail, or engagement modes
(e.g., printable checklists, concise text summaries, or interactive, ex-
pandable step-by-step, text-image guides). This limitation hinders
adaptation to diverse user needs and usage scenarios. To address
this gap, we endeavor to develop an interactive system that trans-
forms instructional videos into notes in a user-preferred format,
enabling tailored and faithful content delivery aligned with indi-
vidual preferences and task-specific needs.

In light of these challenges and opportunities, we present Notelt
(Figure 1), a novel system that faithfully converts instructional
videos into interactive notes. Notelt is designed to handle videos
with flexible hierarchical content structures and diverse presen-
tation modalities, generating notes that maintain structural con-
sistency and comprehensively capture key information. Users can
select the output format based on their preferences and usage sce-
narios. Powered by MLLMs, Notelt introduces a modular pipeline
that first parses the input video to extract its hierarchical struc-
ture and key content presented in visual and verbal formats. This
parsed information is then transformed into a well-defined note
scheme and rendered through a user-friendly, interactive interface.
In summary, our work makes the following contributions:

o A design space for generating interactive notes that maintain
structural consistency with the instructional videos and incor-
porate key verbal and visual information across diverse instruc-
tional videos.

e An end-to-end pipeline that processes instructional videos to
extract hierarchical structures and multimodal key content, and
systematically maps them into structured notes.

e An interactive user interface that enables users to upload in-
structional videos and explore the generated notes with diverse
presentation modalities, verbosity levels, and engagement modes.

2 RELATED WORK

2.1 Mixed-media Tutorials for Instructional
Videos

Mixed-media tutorials are essential tools to facilitate users in learn-
ing skills from instructional videos by engaging multiple auxiliary
components (including text descriptions, thumbnails, and times-
tamps). The HCI community has devoted considerable effort to ad-
vancing these tools for enhancing instructional video experiences
[12, 29, 36, 42, 62]. Their focus has gradually shifted from well-
structured videos, such as software or smartphone usage [12, 64],
and educational videos [42], to instructional videos on physical
tasks, such as cooking, handcraft, makeup, and so on. To enhance
the learning of physical tasks, various mixed-media tools are de-
signed by integrating step-related information (step description
and dependencies) [6, 36, 60, 63] and visual effects [13, 55, 78]. For
example, VideoWhiz [36] presented a non-linear browsing strategy
to benefit cooking video overview. Truong et al. [60] proposed a
multi-modal approach to extract fine- and coarse-level steps to
ease make-up video navigation. Researchers in [55] explored the
potential of visual cues to help learning from physical training
instructional videos. Based on them, an Al-assisted framework,
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TutoAlI [9], is proposed to create mixed-media tutorials from in-
structional videos.

Beyond mixed-media tutorials, note-taking remains a traditional
yet powerful medium, facilitating skill acquisition from instruc-
tional videos [4, 20, 78]. Notes can further augment mixed-media
tutorials by providing flexible formats without relying on video
itself and incorporating comprehensive information. This paper fol-
lows the mixed-media tutorial and instructional video paradigm as
discussed above, and further proposes an advanced note-generation
system. Notelt not only enables auxiliary components retrieval (see
above) and video navigation within mixed-media tutorials, but
also introduces novel capabilities for extracting and visualizing
hierarchical structures and multimodal key information. Existing
mixed-media tutorials only extract the coarse-grained steps, while
Notelt extracts and represents the hierarchical structures at both
chapter and step levels, providing users with a clearer and more
effective learning pathway. Moreover, Notelt comprehensively cap-
tures verbal and visual key information emphasized by creators,
rather than merely gathering thumbnails and step descriptions as tu-
torials do. In contrast to crowd-powered tutorials [6, 29, 36, 42, 70],
Notelt automatically generates notes of consistent quality; although
crowd-sourcing offers lightweight solutions with community sup-
port, the computational cost of deploying the more powerful Notelt
is worthwhile.

2.2 Note-taking and Note Generation

Note-taking serves as a means of externally storing knowledge for
future reference [28]. Researchers in HCI community have explored
various note-taking tools to enhance efficiency and experience [10,
27,35, 58, 59]; likewise, note-taking has been proven to be beneficial
in constructing knowledge from instructional videos [4, 20, 78].
Correspondingly, some systems and tools have been investigated
to assist with note-taking for instructional videos [4, 37, 45].
Automatic note generation is an efficient way to convert key
knowledge into informative notes, alleviating the drawbacks of
manual note-taking, such as frequent playback, cognitive distrac-
tion, and the potential omission of critical information [37, 71].
A series of works focuses on lectures or educational videos. For
example, Xu et al. [71] and Xu et al. [72] extracted visual enti-
ties in the video slides and speech transcripts to generate lecture
notes, and Shin et al. [57] proposed Visual Transcripts that generate
lecture notes from both the visual and audio content of blackboard-
style lecture videos. However, unlike lecture videos that follow a
fixed structure with a predefined outline or progression and convey
content through structural slides, instructional videos on physical
tasks have flexible structures and complex presentation formats,
making them more challenging to process. Powered by LLM, ex-
isting commercial off-the-shelf tools, such as NotebookLM [17]
and NoteGPT [38], are capable of tackling instructional videos on
physical tasks to generate notes. However, these tools generate
only plain-text summarization. Specifically, they mechanically list
the step summaries without explicating step hierarchical organiza-
tions and inter-step relations, hindering users from systematically
grasping the workflow of the physical task. Furthermore, their text
summaries inadequately convey the visual information highlighted
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Chapter 1: Introduction for renting out Chapter 2: Remove casings, damaged wood, Chapter 3: Apply Bondo filler with hardener Chapter 4: Profile and clean up Bondo filler, Chapter 5: Apply wood filler for surface fills,
your home. and apply primer. for large repairs. apply additional coats if necessary. sand, and apply primer.
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Step 1: Use Bondo  Step 2: Buy Bondo Step 3: Use plasticor Step 4: Mix Bondo and Step 5: Apply quickly Step 6: Let the filler
with a hardener for filler online. cardboard to shape a hardener until it's a before it sets. set for 10 minutes.
large repairs. form for the filler. uniform greenish blue.

(a) Vertical structure

Video frames

Chapter 1: Introduction to budget meal Chapter 2: Steps for preparing overnight  Chapter 3: Steps for preparing sticky honey Chapter 4: Steps for preparing creamy
prepping and key cost factors. oats for breakfast. soy chicken with rice and broccoli for lunch. meatball orzo for dinner.

][ 1 [ 1
<4 - Py, Y
BREAKFAST
-, .

Step 1: Gather base Step 2: Userolled oats Step 3: Prepare Chia Step 4: Use any type Step 5: Almond milk Step 6: Add honey to Step 7: Mix all
ingredients. for better texture. seeds. of yoghurt. can be substituted sweeten if using unflavored ingredients together.
with any milk. protein powder.

(b) Vertical structure and horizontal structure

Video frames

Figure 2: Example of hierarchical structures in the video repairing a damaged door and the video cooking meal on a budget.
(a) The video follows a vertical structure across all chapters as they are presented in a sequential manner. The steps within
Chapter 2 are carried sequentially, and thus, they are also a vertical structure. (b) In this video, Chapter 2 through Chapter 4
are parallel, as they can be performed in any order. Similarly, within Chapter 2, Step 2 through Step 6 are also parallel steps.

by creators, leading to the omission of key information. In addi- hierarchical structure relationships and conveying comprehensive
tion, their fixed text presentation format limits the users’ selections, key information that creators highlight. Notelt integrates MLLMs
failing to accommodate diverse preferences. into a novel pipeline for instructional video understanding, going

Notelt faithfully captures chapter- and step-level hierarchies and beyond simple video summarization to capture and represent hier-
displays their relationships, while comprehensively conveying key archical structure and multimodal key information that supports
information in visual and verbal modalities. Notelt also enables the more effective comprehension for instructional videos.
users to select the presentation modality, content verbosity, and
engagement mode according to their preferences. 3 DESIGN SPACE

To design an automated video note-taking system, we analyzed

2.3 Instructional Video Understanding the selected representative instructional videos and corresponding
Recent advancements in Vision-Language Models (VLMs) have sig- learner notes, focusing on instructional videos on physical tasks.

Based on the analysis, we derive a set of design goals for generating

nificantly enhanced video understanding by integrating semantic
interactive notes from instructional videos. As it is impractical to

interpretation with temporal reasoning. While models like BLIP-2
[32], Video-LLaMA [80], and MiniGPT-4 [81] have shown promise cover all possible videos and notes for analysis, deriving common
in video captioning and summarization, they remain limited in characteristics from representative videos and notes provides a
capturing the long-range structure and fine-grained illustrations reasongble basis' for generalizable desi.gn.goals. We employed a
needed for instructional tasks. Models such as Vid2Seq [73] and purposive sampling to select representative instructional videos and
Video ChatCaptioner [7] extend dense captioning to detailed multi- notes, 11¥<e existing HCI works. [9, 11, 13]. Thus, the automatic note
sentence summarizations for long, complex videos, while VidIL generation system grounded in these design goals can generalize

[69] and FAVD [56] enable few-shot and frame-level captioning to across diverse instructional videos and tasks.

capture fine-grained actions. Moreover, researchers also explored Lo . .

the generating and captioning capability of GPT-4 [8] and GPT-4V 3.1 Characteristics of Instructional Videos

[18, 74], respectively, indicating significant improvement. More While note-taking can be applied to any type of video, it is not

recently, GPT-40 demonstrates strong multimodal reasoning abili- always necessary or meaningful across all contexts. Instructional

ties, making it well-suited for instructional video understanding. videos, particularly those that teach physical tasks, present struc-

Leveraging its powerful capabilities in multimodal understanding, tural and goal-oriented knowledge, and note-taking in this context

Notelt is built upon GPT-40 (GPT-40 Vision). serves a useful function. To gain generalizable insight, we conduct
While these advanced MLLMs demonstrate the potential in video a purposive sampling to analyze 80 public YouTube videos across 8

understanding, directly prompting them to summarize video con- common categories: cooking, repair, assembly, handcraft, first aid,

tent with step descriptions remains insufficient for representing makeup, fitness, and device instruction. These categories cover a
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Previous frame

(d) Camera perspective manipulation

(c) Special Marks

Figure 3: Example of visual key information: (a) text overlays of cooking beef and lat pull-down exercise, (b) diagram & graphic
annotations of fitness plan and drawer assembly, (c) special marks of makeup and fitness routine, (d) camera perspective
manipulation from a wide view presenting arm and body position to a close-up capturing detailed hand posture for a quick

upward thrust.

broad range of everyday skill-learning tasks. The selection criteria
are as follows: (1) each video is from a different creator; (2) each
focuses on a distinct task within its category (e.g, repairing a door
jamb vs. a fridge); and (3) videos vary in duration. These selection
criteria allow us to capture a wide variety of videos, ensuring rep-
resentativeness. We asked 6 raters to annotate the video structure
and key content in visual and verbal formats, and each video was
annotated by 2 raters and checked by 2 raters to reduce bias.

3.1.1  Vertical and horizontal structures. Among the 80 analyzed
videos, 63 videos exhibit a combination of sequential and parallel
structures, 16 videos feature only sequential structures, and 1 video
contains exclusively a parallel structure (see details in Appendix).
Given the results, we found that instructional videos typically have
a vertical structure for sequential content presentation or a horizon-
tal structure for parallel or alternative content presentation. The
identified generalizable patterns in terms of hierarchical structure
are elaborated as follows.

Vertical structure for sequential content presentation. In-
structional videos typically have sequential content to present
chapter-by-chapter or step-by-step instructions. Specifically, chap-
ters typically follow a logical progression from overall goals to
implementation and, finally, to summary, while steps within each
chapter elaborate detailed actions in order. We define this sequen-
tial content presentation as a vertical structure. This structure
aligns with natural viewing and cognitive processing flows, guiding
viewers to follow the task from coarse to fine granularity. For ex-
ample, as shown in Figure 2a, a video on repairing a damaged door
follows a strictly vertical structure across all chapters, where the
introduction (chapter 1) and every implementation step (Chapter 2
to 5) are presented sequentially. Moreover, within Chapter 2, Steps
1 through 6 are carried out sequentially to achieve the action of
Apply Bondo filler with hardener for large repairs. Prior research has
also recognized the prevalence of vertical structures in instructional
videos [30, 41] and the importance of capturing such vertical struc-
turing in facilitating comprehension and learning in instructional
contexts [6, 70, 76].

Horizontal structure for parallel or alternative content
presentation. We observed that not all parts of the task follow a
strict sequential order: some chapters or steps can be performed
independently, without dependency on others. Although videos
must be presented linearly due to their temporal nature, these par-
allel or alternative chapters or steps are arranged with annotations
(e.g., timestamps, textual or verbal descriptions) to indicate their
alternative relationships and facilitate navigation. We define these
chapters or steps that are parallel or alternative to each other as

horizontal structure. This structure allows viewers to understand
the flexibility of task execution and improves comprehension of
parallel actions. For example, as illustrated in the video on simple
high-protein meal preparation on a budget (Figure 2b), Chapters 2
through 4 represent parallel processes: preparing breakfast, lunch,
and dinner, which can be completed in any order. This means these
three chapters adhere to a horizontal structure. Within Chapter
2, Steps 2 through 6 involve preparing different ingredients (e.g.,
oats, chia seeds, yogurt, milk, protein powder) and can be car-
ried out independently. A similar horizontal structure appears in
makeup videos, where different facial areas can be addressed in par-
allel. This pattern of parallel or non-sequential structuring has also
been identified in prior work [30, 41]. Moreover, the importance of
recognizing such parallel dependencies for instructional videos is
highlighted by [6, 9, 76].

3.1.2  Key information presentation. Out of the 80 videos analyzed,
65 videos present key visual information, and 78 videos include key
verbal information (see Appendix). We can derive that instructional
videos consistently highlight key information through both verbal
and visual means. Verbally, creators emphasize critical steps using
voiceover narration, such as providing tips and warnings (e.g., pre-
cise temporal or quantitative details). For example, in a cooking
video, the narrator may say, “Let it cook for ten minutes”. Visually,
key information is reinforced through text overlays, visual cues
(e.g., graphic & diagram annotations and special marks including
circles, arrows, and lines) or camera perspective manipulation (e.g.,
shot transition for zoom-in or close-up), detailed as follows:

o Text overlay is widely used to enhance comprehension and
guide viewer attention. Creators add plain text to video frames
to emphasize key terms or instructions as visual anchors [11, 13].
For example, in Figure 3a, text overlays are used to label cooking
ingredients for beef and highlight essential actions in a lat pull-
down exercise.

e Graphic and diagram annotations help clarify complex rela-
tionships and make abstract concepts more accessible [4]. These
structured visual representations are either overlaid on empty
areas of video frames or occupy entire frames. As shown in Fig-
ure 3b, a table outlines the fitness plan for the training goals, and
an instructional diagram illustrates how to lock the plastic cam
into position.

o Special marks such as circles, arrows, and lines are frequently
used to highlight specific elements, ensuring viewers focus on the
details [13, 55]. Specifically, circles enclose specific parts, arrows
indicate direction or causality, and lines connect related elements
or delineate sections (Figure 3c).
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e Camera perspective manipulation is strategically used to
guide viewers’ attention toward key information [11, 13]. Cre-
ators alternate between wide shots for context and close-ups for
detail, guiding viewer focus through visual transitions. In Fig-
ure 3d, a wide view presents the arm and body position, followed
by a close-up capturing the detailed hand posture for a quick
upward thrust.

Recent works [4, 11, 13] suggest instructional videos commonly
employ similar video editing techniques to highlight key informa-
tion.

3.2 Characteristics of Notes

We also employed a purposive sampling of notes to select repre-
sentative notes, deriving generalizable patterns. We identify the
characteristics of notes from two levels. First, to understand effec-
tive and commonly accepted note-taking practices, we collected
10 highly rated note templates from the commercial note-taking
software Notion, where each template was endorsed by hundreds
of users through high scores and positive comments. Additionally,
to incorporate instruction domain-specific patterns, we analyzed tu-
torial documents that accompany instructional videos, focusing on
how users document instructional videos or tasks. We collected 30
tutorials from platforms including iFixit, wikiHow, Google Help, In-
structables, and Allrecipes.com. This dual-layered approach enables
us to derive a design space that is both representative of real-world
practices and directly aligned with our system’s goals. Our findings
are summarized as follows.

Presentation Modality. Notes vary in presentation modality,
with some using text-only formats and others incorporating mul-
timodal elements such as images or video clips. Text-only notes
rely solely on written instructions, making them easy to scan and
follow. For example, the note for making ham and cheese hot pockets
presents clear procedural steps, such as “Unroll dough onto the parch-
ment paper” and “Press perforated seams together or use a rolling pin
to roll dough into a single large rectangle” (Figure 4a). In contrast,
multimodal notes combine text with visuals to provide additional
context and support comprehension. For instance, a battery replace-
ment guide includes an image showing the position of 16 screws
alongside the instruction: “Use a T3 Torx screwdriver to remove the
16 screws securing the midframe to the frame" (Figure 4a). Beyond
content complexity, users’ preferences for processing information
also influence modality: text-only notes benefit those who favor
textual analysis, while text-image formats support visual learners
[65]. This distinction aligns with user-centered design principles
that emphasize adaptability to different cognitive styles.

Content verbosity. Notes vary in their level of content ver-
bosity. Some provide detailed step descriptions, including execution
parameters, contextual cues, and possible variations. For example,
a makeup tutorial advises: “Apply concealer with a patting motion
using your ring finger, focusing on the under-eye area while avoiding
pulling your delicate skin." In contrast, we also found that some of
the notes offer concise descriptions, reducing steps to their essential
components such as a device instruction notes “Adjust brightness:
Settings — Display — Brightness slider." In contrast, other notes
adopt a concise style, distilling steps to essential actions, such as:
“Adjust brightness: Settings — Display — Brightness slider." These
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Step21 Unfasten the midframe

(a) Text-only vs Text-image notes

Manage homes and products with the Nest app

Ingredients

Directions

(b) Printable vs Interactable notes

Figure 4: Examples of notes presentation modality and en-
gagement mode: (a) text-only and text-image modalities. (b)
printable and interactable modes.

differences reflect user interaction patterns, where novice users
tend to prefer detailed guidance, and expert users favor concise
notes that act as memory cues. Prior design work [31] supports
this dual approach, showing that offering both comprehensive and
condensed content enhances cognitive flexibility.

Engagement mode. Notes commonly follow one of two en-
gagement modes: printable or interactable. Printable notes present
all content at once in a static, linear format, making them read-
ily accessible for direct use without user interaction. For example,
recipe notes can be printed and referenced immediately (Figure 4b).
In contrast, interactable notes adopt a dynamic format, revealing
information progressively through features such as collapsible sec-
tions, hover-to-reveal terms, or clickable elements. For example,
in a device instruction notes, detailed steps remain hidden until
expanded by the user (Figure 4b). These two modes align with the
principle of progressive disclosure, which aims to reduce cognitive
load by presenting only relevant information when needed [14, 51].
Thus, printable and interactable notes serve distinct cognitive func-
tions—one prioritizing accessibility, the other supporting focused
engagement.

3.3 Design Goals

Given the representativeness of the selected instructional videos
and notes, they provide empirical grounding for our design goals
analysis. Based on our analysis of instructional videos and notes,
we identify four key design goals to guide the development of a
system that converts instructional videos into notes.

D1. Maintain note structure consistent with the original
video. The note generated should maintain the vertical and horizon-
tal structures of the instructional video, accurately reflecting both
sequential and parallel flows (Section 3.1.1). For vertical structure,
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Figure 5: Notelt’s pipeline consists of four modules. Video parsing module preprocesses video to extract video frames without
redundancy and audio to extract speech transcripts. Hierarchical structure extraction module extracts and represents structures
at chapter and step levels. Visual Key information extraction module selects key frames containing various presentations of
visual information. Note creation module completes the notes content and represents it as a designed structural scheme.

notes should present chapters and steps in a top-down, step-by-
step format that mirrors the video’s order. For horizontal structure,
parallel or alternative chapters and steps should be shown side-by-
side without crossing them with vertical structures. This structural
alignment supports clarity and faithful representation of the in-
structional content [6, 9, 70].

D2. Include both visual and verbal key information. As
analyzed in Section 3.1.2, since instructional videos emphasize key
information both verbally and visually, the notes should capture
verbal key information (e.g., tips, warnings, and precise instruc-
tions from narration) and visual key information (e.g., text overlays,
graphic and diagram annotations, special marks, and camera per-
spective manipulations). Incorporating both modalities ensures
that critical information is preserved, enabling users to follow the
instructions accurately and effectively [4, 13].

D3. Support interaction based on user preferences. As an-
alyzed in Section 3.2, to accommodate diverse user requirements,
task familiarity, and usage scenarios, the note-generation system
should offer multiple options, including modality (text-only or text-
image/GIF pairs), content verbosity (concise or detailed), and en-
gagement mode (printable or interactive). This flexibility ensures
that notes align with individual cognitive styles and practical needs.

D4. Scale across diverse instructional videos. Given the vary-
ing characteristics of instructional videos analyzed in Section 3
across categories, structures, and content types, the system should
be scalable and adaptable without relying on handcrafted rules. It
should automatically generate notes tailored to each video, enabling
broad applicability and meeting the needs of diverse users.

As these distilled design goals capture the common patterns,
the resultant note generation system is established on principles
that are agnostic to video content and domain, generalizing across
diverse instructional videos beyond the selected videos.

4 NOTEIT

Following the set of design goals, we developed Notelt, a system that
automatically converts instructional videos to interactable notes.
The input is instructional videos with flexible hierarchical structure
and diverse presentation of key information. With Notelt’s UL users
can interact with the notes to further customize the content (levels

of content verbosity) and presentation format (presentation modal-
ity and engagement mode) of notes according to their preferences.
As shown in Figure 5, our system contains five modules: (1) video
parsing that preprocesses video to extract video frames without
redundancy and audio to extract speech transcripts; (2) hierarchical
structure extraction to extract and represent structures in chapter
and step levels; (3) key information extraction to select key frames
with various presentations of visual information; (4) note creation to
complete the notes content and represent it as a designed structural
scheme; (5) interactable UI for user customization.

4.1 Video Parsing

We first parse the video to obtain the basic elements (images and
text) from the raw instructional video. The output of filtered video
frames and speech transcripts are passed to the following visual
key information and hierarchical structure extraction modules.

To reduce the redundancy of the original video with a high frame
rate, we employ a dual approach leveraging CLIP for semantic-
aware keyframe extraction and DINO for vision-aware keyframe
extraction. We leverage CLIP [46], a powerful model to understand
visual content in a semantically meaningful way, to extract frames
representing the core content of the video. Specifically, we compute
the visual CLIP embeddings for each frame and calculate the co-
sine similarity between two consecutive embeddings [26]. We then
compare the similarity score with the threshold to filter out the
semantic-aware keyframes. But a purely semantic-aware method
may miss some vision critical frames. To cope with that, we incor-
porate the vision-aware method to extract the frames with visually
distinct moments, even if their semantic relevance is lower. DINO
[40] is employed due to its proficiency in capturing visual distinc-
tiveness and structural variations in images. Similarly, we process
each frame through DINO to obtain embeddings and filter the re-
dundancy based on the cosine similarity. Finally, we identify the
intersection of these two filtered sets as keyframes. For the speech
signal accompanying the original video, we use the speech-to-text
model, Whisper [48], to transcribe the speech into text, and Whis-
per provides sentence segmentation, which we leverage to divide
the text into coherent sentence-level units for further analysis.
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Figure 6: Notelt hierarchical structure extraction pipeline. (a) Vision differential caption method generates video frame caption
from the filtered video frames. (b) The video frame caption, along with speech transcripts extracted from video parsing, are
transformed into the hierarchical transcript. (c) The hierarchical transcript is transformed into chapter and step structure.

CLIP and DINO are pre-trained models that excel in semantic
and visual generalization, while Whisper also demonstrates its
robustness in varied conditions, making the parsing method scalable
to video with different types and content (D4).

4.2 Hierarchical Structure Extraction

This module aims to extract the hierarchical structure in a chapter
level and step level, and represent them as a directed acyclic graph
(DAG), respectively, to clearly show their vertical and horizontal
structure (D1). The extraction of hierarchical structures facilitates
effective learning from physical tasks [2, 70]. To achieve this goal,
our module sequentially performs vision differential caption, struc-
ture elements extraction, and structure relation representation. This
module is built on the GPT-40 with robust scalability (D4).

First, we leverage a vision differential caption method based on
GPT4o-vision (Figure 6a) to generate high-quality captions contain-
ing temporal relations. The intuitive way is to prompt GPT4o0-vision
to caption each frame or concatenate all the frames into a large im-
age for caption, but the generated caption struggles with the correct
temporal relation or the details. In contrast, we feed the previous
key frame and current key frame into GPT4o-vision. Then, we use a
prompt to guide GPT4o-vision to compare the current frame with the
previous one and judge whether a change between them and generate
the caption according to the observation: if there present changes
between two input frames, describe the changes; otherwise, claim the
current frame is continuous with the previous one. The differential
caption process continues until all frames have been captioned.

Second, based on the generated caption of key frame and the
sentence level transcript with time stamps, we use GPT-40 [39]
to cluster the content into chapters and extract steps from each
chapter to construct the basic structure elements of instructional
videos (Figure 6b). To form the chapter-level structure, we prompt
GPT-4o to cluster all frame indices into multiple frame index sets
(chapters) with time stamp based on the input captions and speech

transcript, denoted as C = {c;(fs, te)}, where ts, t, represent start
and end time. The corresponding frame caption and speech tran-
script within the chapter start and end time are extracted as the
chapter content. For each chapter, we prompt GPT-4o to summarize
the content into key steps with time stamps based on the chapter con-
tent, represented as S = {s;;(ts, te) }, where ts, t, represent start and
end time. Correspondingly, the frame caption and the speech tran-
script within the step start and end time are also extracted as the
step content. The chapter content and step content comprise the hi-
erarchical transcript, the hierarchical structure with corresponding
transcripts.

Finally, we represent the vertical and horizontal structure of
chapters and steps (Figure 6c). To achieve this, we design the Chain-
of-Thought reasoning steps that break the hierarchical structure
extraction tasks (chapter and step levels) into two sub-tasks, in-
cluding relation extraction and representation based on DAG, and
guide GTP-4o0 to execute them step by step. We prompt GPT-4o0 to
identify the logical relation between chapters (or steps) based on the
corresponding content and categorize them as sequential or parallel
and alternative relation. Then, it iteratively constructs a DAG to rep-
resent the identified relation between chapters (or steps). Formally,
in the prompt template, we define the DAG as G = (V, E), where
nodes V = {vy, ..., v, } represent the structure elements (chapters or
steps) and directed edges (v, vn) € E, where E C V X V (for every
sequence of edge (v1,02), ..., (Vg _1, Vg), it must hold that v1 # vg),
encode the sequential relation as the predecessor to successor and
the parallel or alternative relation as multiple successors from the
same predecessors. With the DAG-based representation, the verti-
cal and horizontal structures of chapters and steps are extracted to
faithfully reflect the hierarchical structure in the original video.

4.3 Visual Key Information Extraction

This module aims to extract frames representing visual key informa-
tion from filtered images (D2). To achieve this, the module presents
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an agentic workflow to extract the static key frames (text overlays,
graphic and diagram annotations, and special marks) and leverage
a suit of vision and language models to extract the dynamic key
frames (camera perspective manipulation), respectively.

4.3.1 Static key frames. As analyzed for visual key information,
text overlays, graphic and diagram annotations, and special marks
are static information existing in the corresponding key frames.
Therefore, they can be detected by directly inspecting whether
video frames contain such elements. Since these visual key infor-
mation have distinct characteristics and also vary across different
videos, it is challenging to establish criteria for extracting such
visual key information from each video. Therefore, we propose
an agentic workflow to adaptively derive key frames containing
static information from various videos (D4), where GPT-40 acts as
a planner to formulate high-level sub-tasks given the query task
and GPT4o-vision acts as an executor to perform the sub-tasks that
humans further refine. The planner operates as a reasoning module
that interprets user-specified tasks—such as "Determine whether the
image contains text overlays / graphic & diagram annotations / spe-
cial marks and output the content-related results"—and decomposes
them into corresponding sub-tasks: (1) detect text overlays and filter
out the topic-related OCR results; (2) detect graphic & diagram anno-
tations and explain them using the related content; (3) detect special
marks and output the results that are not duplicated with previous
detection results. These sub-tasks are formulated in natural language
and the corresponding prompt is further refined through human
knowledge by providing examples and defining the output formats.
Then, these prompts with input images and speech transcipts are
passed to the executor based on GPT4o-vision, which performs each
sub-task sequentially and finally outputs the detected key frames
with topic-related OCR results and content-related explanation (if
present). The designed workflow enables the extraction process to
generalize across heterogeneous videos while faithfully extracting
key frames containing static visual information.

4.3.2  Dynamic key frames. To capture camera perspective manip-
ulation, we identify dynamic key frames that represent significant
changes in camera viewpoint, such as zoom-ins or close-up transi-
tions. These transitions are widely used in instructional videos to
highlight important visual details and draw user attention to critical
objects or actions. We implement this by first applying a scene-
based segmentation using PySceneDetect [5] to obtain coarse scene
boundaries. For each segment boundary, we analyze the visual dif-
ference between sampled frames before and after the cut. To evalu-
ate whether the frames refer to the same entity or event, we compute
a set of perceptual similarity metrics between the two frames, in-
cluding global and center-cropped structural similarity (SSIM) [68],
color histogram distance, ORB feature matching [53], and semantic
similarity using CLIP [47]. In addition, we apply monocular depth
estimation via a MiDa$ [49] model to verify whether the transition
involves a notable change in scene depth—e.g., a movement from a
wide shot to a close-up. When all criteria are met, the timestamp
of the boundary is recorded as a dynamic key frame. These points
often correspond to visually and semantically meaningful transi-
tions and are later used to enhance note creation. These powerful
pre-trained models provide strong guarantees of robustness (D4).
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4.4 Note Creation

Considering the completeness of the notes, we further create the
chapter and step summary and select the thumbnail for each step.
Based on the extracted hierarchal structure, visual key information,
step summary, and thumbnail, we define a note scheme to represent
the note content for the user interface.

4.4.1 Chapter and step summarization. Given the speech tran-
scripts within each chapter, we prompt GPT-40 to generate a con-
cise, high-level summarization encapsulated within a single sen-
tence, allowing viewers to grasp the content quickly. For each step
belonging to a chapter, we leverage the corresponding speech tran-
scripts, along with the extracted OCR and graphic & diagram results
of a keyframe (if available) within the step, as the input for step
summarization. We then prompt GPT-40 to summarize the input
as an instruction step at different levels of detail, including verbose
and concise, associated with the prompt specifying “summarize a de-
tailed instructional step with some explanations and examples within
three sentences and suggest suitable emoji" and “summarize a concise
instructional step within one sentence”, respectively (D3). Meanwhile,
in order to include the verbal key information, the summarization
is also guided by a prompt to “identify the key information (such
as tips and warnings) within the input and highlight them in the
summarized step” (D2).

4.4.2 Thumbnail retrieval. A thumbnail can represent the content
of a step. We employ BLIP2 [33], a powerful vision-language model,
to retrieve a representative image, which is used as the thumbnail
for each step. Given a textual summarization of a step, BLIP2 em-
beds the text into a shared vision-language space and computes
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Figure 8: User interface overview. (a) Video player displaying
the uploaded video and corresponding transcript. (b) Video
hierarchy, with (b-1) a button for displaying or hiding the
hierarchy, (b-2) the chapter-level structure, and (b-3) the step-
level structure within a selected chapter. (c) Notes, with (c-1)
options to customize the modality of the notes (text-only
or text with images), (c-2) engagement level (printable or
interactable), and (c-3) detail level (concise or verbose). In
interactable mode, (c-4) parallel sections are displayed as
collapsible slides with tabbed summaries, (c-5) notes for each
step, (c-6) a GIF demonstrating the step, and (c-7) text or
graphical hints shown in verbose mode (if available).

similarity scores against a pre-encoded set of candidate image em-
beddings, restricted to images falling within the timestamps of the
corresponding step. We select the image with the highest similarity
as the step thumbnail. For each chapter, we directly use the video
frames within the chapter timestamps to generate a GIF to represent
the corresponding chapter.

4.4.3 Note scheme creation and note generation. The defined note
scheme represents all the extracted information of the instructional
video in a clear structure to benefit the following construction of
interactable UL Based on the extracted hierarchical structure and
key frames, we incorporate chapter and step summarization, thumb-
nails, and key frames to the corresponding position according to the
index. Given a fitness video for a back gym routine, Notelt extracts
keyframes (text overlays, graphic & diagram annotations, special
marks and camera perspective manipulations), structure (chapter
and step), summarization (chapter and step), and thumbnails, and
they are integrated into a unique note scheme (Figure 7), which is
used to create the note interface of this fitness video. We implement
the note scheme using predefined HTML div templates with CSS
styling and JavaScript interactions, dynamically loading the scheme
to generate the interactive notes.

4.5 User Interface

We developed a web-based interface for Notelt that allows users
to generate, review, and customize notes generated based on the
uploaded video (D3). As illustrated in Figure 8, the interface consists
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of three main components: (a) video player, (b) video hierarchy, and
(c) notes.

Video Player. The uploaded video and its corresponding transcript
are displayed in the left column of the interface (Figure 8a).

Video Hierarchy. The middle column presents the video hierarchy
(Figure 8b), with the upper part (Figure 8b-2) showing the chapter-
level structure and the lower part (Figure 8b-3) displaying the step-
level structure within a selected section (chapter). Users can select
a section by clicking on it in the upper part, and the lower part will
update accordingly. Additionally, the middle column can be toggled
for visibility by clicking on the botton shown in Figure 8b-1.
Notes. The right column (Figure 8c) displays the notes generated
from the video. Users can customize the note’s modality (text-only
or text-image, Figure 8c-1), engagement level (printable or inter-
actable, Figure 8c-2), and detail level (concise or verbose, Figure 8c-
3). Notes for each step are presented vertically (Figure 8c-5). In
interactable mode, parallel sections are collapsed into slides, and
users can navigate through them using a slider with tabs displaying
section summaries (Figure 8c-4). In printable mode, both the verti-
cal and horizontal sections are displayed in sequence. Furthermore,
in interactable and text-image mode, a GIF is included to demon-
strate each step (Figure 8c-6). In verbose mode, the step notes are
more detailed, and any text or graphical hints are directly displayed
(Figure 8c-7). Users can also edit the notes or expand them to fill the
screen. We will include the video hierarchy editing in the future.
Interaction Across Components. Clicking on a section or step in
the video or section hierarchy, the video on the left will jump to the
corresponding start time, and the related note will be highlighted
in the right column and scrolled to the center of the screen. Addi-
tionally, clicking on a time or step index in the note will cause the
video to jump to the corresponding start time, ensuring smooth
interaction between the video and note sections.

4.6 Implementation

Notelt is implemented with a remote server with one Nvidia GeForce
RTX 3090. CLIP uses the pre-trained model clip-vit-large-patch
14-336 to encode images for semantic-aware processing, and DINO
uses the pre-trainied model dinov2_vitg14 to encode images for
vision-aware processing. For speech signal processing, Notelt uses
OpenAl Whisper-large for speech transcription and sentence
segmentation. Moreover, Notelt is powered by OpenAl GTP-40
(GPT40-vision) APIfor captioning and reasoning. BLIP2 use blip2
-itm-vit-g to encode text and images as text embeddings and vi-
sion embeddings. The processing time of Notelt is sensitive to server
performance, for example, a 7:10 video takes about 25 minutes to
process. Computation cost can be optimized with advanced MLLMs’
API or keyframes clustering to narrow the extraction space. The
user interface is implemented using D3.js for interactive data vi-
sualization, with Python and the Flask framework serving as the
backend to manage server-side logic and API integration. Addi-
tionally, the system leverages the YouTube API to retrieve video
metadata and content.

5 TECHNICAL EVALUATION

To demonstrate the effectiveness and generality of Notelt, we con-
ducted a technical evaluation by measuring the performance of
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hierarchical structure extraction and the performance of visual key
information extraction.

5.1 Datasets

We selected 32 instructional videos in 8 categories from the original
80 videos we analyzed in Section 3. We selected 4 videos for each
category to diversify the video categories, and we also considered
the following criteria: (1) the video clearly shows the hierarchical
structure, with both vertical and horizontal structures; (2) key in-
formation are presented both verbally and visually; (3) the video
contain at least two of the visual key information (text overlay,
graphic & diagram annotations, special marks and camera perspec-
tive manipulations), and the more the better. The average length of
the selected videos was 8.63 minutes (min = 3.91 minutes, max =
15.27 minutes). The purposefully chosen maintain the same level of
diversity and rich characteristics, ensuring the evaluation reflects a
broad range of real-world conditions.

5.2 Method

Notelt parses all the 32 instructional videos to generate correspond-
ing notes. To evaluate the extraction capabilities of hierarchical
structure and key frames of visual key information, we asked 10
in-house raters from our university to label all 32 instructional
videos, which serve as the ground truth. All raters were trained by
the annotation process, and they were blinded to our evaluation
method. Each video was annotated by 2 people and further checked
by 2 raters. The raters annotate the chapter structure and frames
containing both static (text overlays, graphic and diagram anno-
tations, and special marks) and dynamic key information (camera
perspective manipulations).

For hierarchical structure, we mainly consider the structural seg-
mentation instead of the time boundary because it has an objective
evaluation criterion. Although segmenting a video into chapters
and steps is subjective [16], reaching a consensus is relatively easier
for chapter-level segmentation compared to step-level segmenta-
tion. Therefore, our evaluation of the hierarchical structure focused
primarily on chapter-level segmentation. To assess it, we used Mean
Relative Accuracy (MRA) [75] in the range of 0 to 1, which measures
how well the chapter-level structure extracted by Notelt aligns with
the ground truth. A higher MRA score closer to 1 indicates better
alignment and correctness in chapter segmentation. For key infor-
mation extraction capability, we calculated Recall, Precision, and
F1-score, the widely used metrics [9, 44, 63], for evaluation. Each
metric in the range between 0 and 1 is computed by comparing the
frames annotated by the raters (ground truth) with those extracted
by Notelt.

5.3 Results

Table 1 presents static and dynamic visual key information extrac-
tion performance of Notelt. For static scenarios including text over-
lays, graphic and diagram annotations, and special marks, Notelt
successfully captures nearly all key infomation with minimal false
positives, as evidenced by consistently high precision, recall, and F1
scores all above 91%. In contrast, dynamic scenarios, characterized
by camera perspective manipulation, involve more implicit and less
standardized patterns, often lacking stable visual markers. Though
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Table 1: Visual key information extraction performance.

‘ Avg. Recall Avg. Precision Avg. F1

Text overlays,
Graphic & Diagram

. 91.88% 92.20% 91.63%
annotations,
Special marks
Camera perspective
. . 67.94% 90.96% 70.86%
manipulation
Average | 79.91% 91.58% 81.24%

challenging, Notelt achieves a high precision of 90.96%, indicating
that most of the dynamic visual key information it identifies is
indeed relevant and important. The recall of 67.94% suggests that
Notelt effectively identifies prominent and noticeable dynamic cues,
while more subtle or less salient instances may be missed due to the
implicitness and variability in dynamic visual content. For example,
overly gradual camera transitions might produce imperceptible
changes between frames, hindering the identification of dynamic
cues. Additionally, scenarios involving excessively rapid zoom-ins
that lose surrounding context make it difficult to discern whether
consecutive frames are part of the same overall scene. Notably, some
frames in camera perspective manipulation may not necessarily
contain information crucial for task progression. Since our entire
pipeline is designed to help users learn from instructional videos,
missing certain subtle or less noticeable frames does not impact its
overall effectiveness. A recall of 67.94% is sufficient to capture the
most critical dynamic visual cues, providing meaningful support
to users without compromising the learning process. Furthermore,
we discuss this potential improvement in the Limitations section.
Overall, Notelt effectively and reliably extracts the majority of both
static and dynamic visual key information.

To assess chapter-level segmentation, we calculate the average
MRA score across all 32 instructional videos. Notelt achieves an
average MRA score of 75.31%, with 11 videos exhibiting a per-
fect MRA score of 1.0, indicating that all chapters in those videos
are correctly identified. These results underscore Notelt ’s strong
alignment with human interpretations, demonstrating the model’s
advanced capability in parsing complex video narratives.

6 USER STUDY

We conducted a user study to assess the feasibility of our pipeline
and the overall usability of the user interface. The same 32 videos
as in the technical evaluation (Section 5) are used for the user study.

6.1 Participants

We used G*Power [15] to determine the required sample size for a
Wilcoxon Signed-rank test [52] with a moderate effect size (d = 0.5),
significant level @ = 0.05, and power (1 — ) = 0.8, resulting in a
minimum of 35 participants. Accordingly, we recruited 36 partici-
pants via word-of-mouth and online advertisement in our university
community. All the participants aged between 22 and 44 (M = 27.1,
SD = 3.9), including 25 self-identified males and 11 females. One
participant was a tutorial video creator, and three had authored
tutorial notes. All had prior experience with watching or creating
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Figure 9: Overview of the user study procedure. The user first lands on the (a) welcome page. Upon entering each tool page, an
instruction screen (b) is shown. After clicking the confirm button at the end of the instruction, the instructional video and
corresponding note are displayed (c). Once the first video is completed, the user proceeds to another video-note pair generated
by the same tool (d). After reviewing both videos, the user completes a survey evaluating the first tool (e), then moves on to
review notes generated by the second tool (f, g). A final survey (e) follows to assess the second tool.

instructional videos and note-taking. None of the participants had
experienced our system or the baseline system before they came.
Informed consent was obtained, and each participant received a
$10 gift card for participation.

6.2 Procedure

We adopted a within-subject design in which each participant evalu-
ated notes generated by both Notelt and a baseline LLM-based note
generation commercial application, NoteGPT [38]. NoteGPT sup-
ports functionalities such as Al presentation, Al homework helpler,
and Al book library. However, they are out of this paper’s research
scope. We mainly use its note generation function of converting
YouTube videos into notes, which mostly aligns with this paper’s
research scope, making it an appropriate point of comparison for
evaluating our approach. The study was conducted on a dedicated
web-based platform (Figure 9), which integrated both tools to en-
sure a consistent and autonomous user experience. Specifically, we
copied the outputs generated by NoteGPT for our study videos into
the platform for comparison.

Participants accessed the study via a shared link distributed
through email and messaging platforms. Upon landing on the wel-
come page (Figure 9a), participants received study instructions,
provided consent, and proceeded to review two instructional videos
with corresponding notes from the first tool (Figure 9d,c). They then
completed a questionnaire assessing their experience (Figure 9e).
This process was repeated for the second tool using the same two
videos (Figure 9f,g). To preserve anonymity during the study, we
referred to the two tools as Tool A (Notelt) and Tool B (the base-
line tool) throughout all participant-facing materials and analysis.
We also employed a counterbalanced study design to control for
order effects: half of the participants used Tool A first, followed
by Tool B, while the other half followed the reverse order. This
ensured that any observed differences in user experience or perfor-
mance were not biased by the sequence in which the systems were
used. Each post-tool survey included 5-point Likert-scale items (1
strongly disagree - 5 strongly agree) [25] evaluating consistency,

informativeness, adaptability, and overall satisfaction, along with
open-ended feedback. For Notelt, additional questions assessed the
note customization features. We also conducted the System Usabil-
ity Scale (SUS) [1] study to evaluate the overall usability of the
entire system.

6.3 Results

The results are reported in Table 2, including the mean and standard
error of users’ ratings. For questions applicable to both Notelt and
baseline, we performed two-sided Wilcoxon signed-rank tests to
compare user ratings. The p values less than 0.05 were considered
statistically significant. As for the overall system usability, Notelt
achieved an average SUS score of 78.1 (SE = 2.02, SD = 12.11).

6.4 Findings

Participants rated Notelt significantly higher than the baseline
across all design goals and evaluation metrics.

Notelt provides consistent hierarchical structure aligned with
the video. Notelt achieved the highest average score of 4.69 for
Consistency, significantly outperforming the baseline (p<0.001).
Participants noted that its hierarchical segmentation, clear step
labeling, and text-image pairing helped them follow the video more
logically and retain the sequence of actions (D1). Many appreciated
how the notes mirrored the video structure, reducing the need to
rewatch. These findings align with the previous research that struc-
ture facilitates video comprehension [6, 70]. For example, P2 stated,
“The detailed steps provided can easily guide me to understand what
I should do next,” and P29 remarked on the efficiency of navigating
the restructured content. Only one participant (P34) reported a miss-
ing step, and P34 raised the question “Can I add the missing step
in the system?" In contrast, while some users acknowledged that
the baseline tool helped convey the video’s general idea (P7, P23),
23 out of 36 participants reported missing key steps. The baseline
performed reasonably well on simple-structured videos but strug-
gled with longer or more complex content. In such cases, Notelt
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Table 2: The result of statistic analysis. We report the mean M and standard error SE for the baseline tool and Notelt, and
the test statistic W and p value of the Wilcoxon signed-rank test. All tests were two-sided, where p-value < 0.05 indicates the

statistical significance.

Consistency: Notes cover all key sections and steps in the video. (Q1)

Consistency: Key section and step boundaries in notes align with the video. (Q2)

Consistency: Notes followed the video structure with correct step order and clear parallel steps. (Q3)
Informativeness: Notes capture key verbal information in the video. (Q4)

Informativeness: Notes capture key visual information in the video. (Q5)

Adaptability: Notes support diverse video categories and characteristics. (Q10)

Overall Satisfaction: Users prefer using the generated notes over rewatching the video. (Q11)

Customization: The necessity of customizing note detail levels. (Q6)

Customization: The necessity of customizing engagement (printable or interactable). (Q7) -

Customization: The necessity of customizing note modality. (Q8)
Customization: The satisfaction after customization. (Q9)

UI Design Usefulness: The usefulness of structure inspection via tree. (Q12)

UI Design Usefulness: The usefulness of locating content via tree click. (Q13)
UI Design Usefulness: The usefulness of switching note modalities (text only and text & image). (Q14) -
UI Design Usefulness: The usefulness of switching detail levels (concise and detailed). (Q15) -
UI Design Usefulness: The usefulness of switching engagement modes (printable and interactable). (Q16) -

M (SE)

Baseline Notelt w P
339(0.21) 4.78(0.07) 55  <0.001*
2.61(0.23) 4.58(0.09) 4.5  <0.001*
2.69(0.22) 4.72(0.09) 9.0 <0.001*
3.03(0.21) 4.64(0.08) 0.0  <0.001*
2.28 (0.20) 4.44(0.10) 3.0  <0.001*

2.92(0.21) 4.44(0.11) 180 <0.001*
2.75(0.23) 4.31(0.15) 5.0

- 433(0.13) - -
417 (0.14) - -
- 450(0.13) - -
- 450 (0.09) - -
- 433(0.13) - -
- 472(0.08) - -
433(0.15) - -
431(017) - -
400(0.17) - -

consistently captured more complete and accurate instructional
sequences.

Notelt captures key verbal and visual information in the video.
Notelt significantly outperformed the baseline in conveying key ver-
bal and visual cues. Most participants found the notes informative
and concise, with 14 out of 36 specifically praising the combina-
tion of text and images or GIFs for enhancing comprehension (D2).
The system’s ability to summarize key steps, visuals, and timelines
helped users focus on essential content while skipping redundant
parts. As P5 noted, “It provided structural, vivid, and illustrative
notes... which helped me better understand and memorize the key
content of the video”

While a few users pointed out minor omissions, such as specific
quantities in cooking videos (P33), the baseline tool showed more
frequent gaps, missing ingredients (P18), numerical values (P16),
and instructional steps (P8). P33 also suggested “It would be better
if the system could allow me to define the visual information that
I think is important in different videos." A few participants also
noted that some visual outputs from Notelt were overly detailed or
redundant (P29).

These findings align with prior studies that suggested the im-
portance of visual and verbal key information [4, 11, 13]. They also
demonstrate that Notelt not only improves information density
and clarity but also offers a more structured and memory-friendly
experience. While occasional gaps remain, the overall enhancement
in note informativeness and user comprehension reflects the po-
tential of multimodal note-taking systems in supporting diverse
video-based learning tasks.

Notelt provides necessary and useful customization. Notelt
received an average score of 4.38 for customization. P5 described
the interactive mode as “surprisingly good and illustrative,” while
P28 appreciated choosing modes based on their needs. Most par-
ticipants (29 out of 36) (strongly) agreed that the ability to switch

between concise and detailed notes was useful, though some, like
P3, found the detailed version unnecessary for simpler videos. A
few participants (e.g., P17, P22, P34) criticized excessive emojis and
detailed text hints for adding cognitive load.

For engagement modes (printable vs. interactable), most users
supported the feature, though some found it less distinguishable in
simpler scenarios where differences between modes were minimal
(P6) and always preferred the interactable version (P7, P19, P21).
Regarding modality customization (text-only vs. image/GIF-text
pairs), the majority of participants (32 out of 36) supported the
feature, while P2 and P17 described the text-only mode as redundant.
Additionally, P23 noted that while customization was helpful, too
many options could become overwhelming.

We also asked the participants to rate the usefulness of UI compo-
nents in Notelt, such as inspecting and navigating the tree structure
and selecting presentation modes. All components scored no less
than 4.0, with “locating notes from the tree” receiving the highest
rating (M = 4.72, SD = 0.45) and the selection between printable
and interactable modes the lowest (M = 4.0, SD = 1.01).

These results indicate that users valued the system’s customiza-
tion to personal learning styles and task complexity (D3), which
aligns with what we analyzed in Section 3.2. Visually rich, inter-
active, and concise formats were generally preferred. However,
effective UI design should balance flexibility with simplicity to
avoid unnecessary cognitive burden [24].

Notelt supports diverse video categories and content. Notelt
was rated significantly higher than the baseline in adapting to
instructional videos of varying length, structure, and complexity
(p<0.001). The participants found the baseline tool was able to
provide summaries and identify some key points for relatively
shorter instructional videos with a simple structure (e.g., a first-aid
video without horizontal structure and a make-up video with only
one horizontal alternative, P29, P30). However, it struggled with
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more complex content (e.g., a fitness video with nine alternative
parallel sections and a cooking video with details about ingredient
amounts, P10, P18). In contrast, Notelt consistently handled diverse
structures and topics more effectively, earning higher ratings across
video types (D4). While a few participants (e.g., P15, P23) were
curious about whether other videos could be processed.

High satisfaction of Notelt. Notelt received significantly higher
ratings for overall satisfaction than the baseline (p<0.001). Partici-
pants particularly appreciated its clear structure (15/36), efficiency
(21/36), ease of learning and reflection (13/36), and multimodal pre-
sentation (8/36). Many noted they could quickly access relevant
content and skip unnecessary parts. As P6 stated, “It provided me
with a clear structure of the video and I can easily find the note for
a specific step,” and P29 highlighted its efficiency in helping users
locate desired segments. P17 remarked, “I can understand a 6-min
video by looking at the notes within 1 minute,” but criticized the
baseline notes as poorly structured and hard to follow.

High usability of Notelt. Notelt achieved an average SUS score of
78.1 (SE = 2.02, SD = 12.11). The lowest score is 57.5 (P35), and the
highest score is 100 (P9 and P25). Most users found the tool intuitive,
with features like note-to-video linking, quick navigation, and multi-
modal displays improving usability. The ability to jump to video
sections, review and reflect without rewatching, and track progress
contributed to an overall efficient and accessible user experience.
“I can skip the parts I already know, and I can understand a video
by just reading the notes.” (P17) “It helped me to quickly find the
part I am interested in” (P23) A few participants pointed out that it
required some effort to learn how to use this tool (P15, P35, P36).

6.5 Discussion

Despite high satisfaction, we reflect on the findings and participants’
suggestions to discuss design opportunities to improve Notelt.
Generalize to diverse instructional videos. Participants sug-
gested that our system could support user-defined visual infor-
mation extraction (P33) and note generation for various videos
(P15, P23). Although Notelt are capable of processing other videos
beyond the selected videos, it is important to enhance the frame-
work to adapt to novel input features and thus generalize to dif-
ferent videos. As existing visual extraction module is powered by
foundation models with zero-shot ability [39, 46], we suggest that
future research carefully design the sub-module based on MLLM
and foundation models in Notelt and integrate this sub-module
into Notelt to adaptively extract the user-defined key frames. Given
this adaptation for novel input, it is possible to extend the existing
framework to process different videos with distinct features.
Customization Enhancement. Participants recommended en-
hancing customization by supporting figure editing (P6), handwrit-
ing input (P10), sticky headers for easier navigation (P31), a manual
highlight feature (P15), and timestamp and GIF edits (P33). P23
pointed out that too many options could overwhelm users. These
insights highlight the need for providing flexible yet intuitive cus-
tomization features that align with users’ individual preferences and
cognitive strategies [26]. Rather than offering exhaustive configura-
tion, effective customization should balance control with simplicity,
enabling users to tailor the experience without becoming burdened
by interface complexity. This suggests a direction for supporting
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more adaptable interfaces that scale with user expertise and task
demands.

Advanced Interaction. While participants can edit and save the
generated notes, they recommended enhancing interactivity by
supporting prompt-based note regeneration and question answer-
ing (P16, P23, P28, P33) and revisable hierarchical structure (P12).
In response to participants’ expectations, we suggested that future
work could explore responsive and intelligent modes of user inter-
action. Inspired by recent works that enhance interaction with LLM
[43], we look forward to investigating the potential of integrating
LLM-powered conversational agents and context-aware interfaces
to support real-time clarification, retrieval, and personalization,
transforming note-taking into a more interactive, learner-centric
dialogue. In addition, visualizing hierarchical structure in Notelt is
a novel way to enhance user understanding of instructional tasks.
For complex tasks in particular, a clear or well-organized structure
could possibly improve learning efficiency. Therefore, it is impor-
tant to allow users to revise or control the hierarchical structure
according to their understanding and learning preferences.
Integrate with other tools. Participants emphasized the value of
integrating with other tools, such as mind maps (P19), Notion (P21,
P22), and generating flowcharts or diagrams from video content
(P17). These suggestions reflect a need for seamless workflow in-
tegration across platforms. For example, studies have shown that
digital mind mapping tools can enhance academic performance
by improving comprehension and organization of complex infor-
mation [19]. Knowledge Graphs offer a promising approach to
represent complex relationships among different steps and con-
cepts [21]. We look forward to integrating visual expressiveness
and inclusive design for more effective information management.
Visual and Accessibility Improvements. Participants recom-
mended enhancing visual clarity by distinguishing key details (P24),
using more representative images or generated icons to better sum-
marize sections (P29), and adding a colorblind mode to enhance
accessibility (P32). These recommendations highlight the critical
role of intuitive and inclusive visual design in instructional systems.
Prior research has shown that the effective use of visual differenti-
ation, representative imagery, and accessibility features not only
improves content comprehension but also significantly elevates
overall user engagement and satisfaction [54]. Additionally, aes-
thetic manipulation can influence users’ perceived usability [61].
We suggest integrating well-considered visual and accessibility
features to enhance user engagement and satisfaction.
Summarization and Metadata Support. Participants emphasized
the need for clearer summarization and metadata. Suggestions in-
cluded adding a summary or video overview (P30, P35), showing
total and segment durations (P11), and providing extended advice
beyond the original video (P20). These suggestions highlight the
value of structured, contextual guidance in facilitating efficient
knowledge acquisition and comprehension. Integrating concise
summaries and comprehensive metadata can help learners quickly
have an overview of the video content and assess its relevance.
We look forward to augmenting existing video note-generating
tools like NoteGPT [38] and NotebookLM [17] to provide more fine-
grained key information, structured navigation, and supplemental
guidance, ultimately enhancing the user’s ability to effectively com-
prehend and engage with instructional videos.
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7 LIMITATION AND FUTURE WORK

In this section, we discuss the limitations of Notelt, and propose
future directions that could further advance research in the field of
automatic note generation.

Beyond instructional videos and learning notes. As men-
tioned in the paper, our study centers on instructional videos; ac-
cordingly, we only select a certain number of instructional videos
and notes for design space analysis based on specific criteria. Given
the impracticality of analyzing every instructional video and notes,
we adopt purposive sampling to select representative instructional
videos and derive common patterns from them, which has been
proven to be a feasible solution in the HCI community [9, 11, 13].
The selection criteria, spanning diverse categories, creators, tasks,
and durations, ensure the representativeness of the selected videos.
Therefore, the derived design goals is reliable and generalizable,
despite being derived from a limited set of instructional videos. We
believe that, grounded in these design goals, Notelt can general-
ize well beyond the selected videos to wide range of instructional
videos. While other video types were considered outside the scope,
Notelt exhibits strong generalizability, suggesting the potential
of our pipeline to be extended beyond its current intent. We en-
vision future research directions of expanding the video-to-note
conversion in broader domains, such as entertainment and casual
contexts—covering video types like game streaming and vlogs—as
well as supporting alternative note formats, including flyers and
posters.

Unsatisfactory outcomes in video processing. While our tech-
nical evaluation indicated strong performance in extracting visual
key information across the eight categories examined, we observed
some missing key frames of visual information in a small number
of videos. One contributing factor is camera perspective manipula-
tion: extremely rapid shot transitions can disrupt entity and event
alignment between consecutive frames, whereas extremely grad-
ual zoom-ins or pans may not be recognized as distinct scene cut.
Another challenge arises from specialized instructional formats,
such as multi-window or slide-like layouts (e.g., displaying multiple
sub-frames or simultaneously overlaying multiple views). These
layouts can interfere with or fragment the main content, thereby un-
dermining depth estimation, CLIP similarity, and feature matching
methods, which assume a single coherent scene per frame. A poten-
tial solution could be to integrate advanced video encoders [22, 80]
and video processing tools [50] that better capture overall scene
context and user-relevant actions, subsequently incorporating those
outputs into cross-frame similarity assessments.

Form factors of the generated notes. On the note generation
side, we support a series of presentations that have been commonly
used in online textual media posts. Meanwhile, we support users
printing out the notes for further offline references. Yet, the sup-
ported formats and layouts are pre-defined. Each video has its
distinct features and in some cases, it may not be appropriate to
classify them into a fixed set of formats or layouts. In future work,
we could consider the adaptive presentation formats and layouts
that respond to the specific features of each video. One promising
direction is to further unleash capabilities of LLM in design [23, 34],
where LLM can generate the HTML code for website formats and
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layout according to the videos summarization. Nevertheless, inte-
grating such adaptability into our current MLLM-based pipeline
will require significant effort and further exploration.

Expertise-Aware Note Customization. While Notelt allows
users to select the detail level of notes and jump to the notes of
interest through the video hierarchy, the note is not currently di-
rectly adapted to the individual expertise of users. For example, a
user who is proficient in foundation makeup but lacks experience
with eye makeup may prefer that the notes for a makeup tutorial
provide a simplified description or even omit details on foundation
application, while offering more detailed guidance on eye makeup
techniques. This highlights the need for expertise-aware customiza-
tion that adjusts the notes based on a user’s specific proficiency,
ensuring that the note content is both relevant and efficient for
users at varying skill levels. To address this, we could allow users
to provide key information about their expertise and expectations
regarding the notes before video processing. This information could
then be incorporated into the processing pipeline to generate more
customized notes tailored to individual needs. Such a feature would
enable Notelt to offer a more personalized learning experience, en-
hancing user engagement and knowledge retention across diverse
levels of expertise.

Advanced notes system capabilities. Our current pipeline ex-
tracts visual key information primarily from frames featuring text
overlays, visual cues, and camera perspective manipulations. Scene
coverage can be further broadened by exploiting video frames
aligned with salient linguistic markers in the instructor’s narration,
such as deictic expressions (e.g., “here” or “this way”), syntactic
cues that foreground importance, and discourse-level references
that link prerequisite actions to later steps. The potential solution is
to incorporate an LLM-centric agent [67] to understand and capture
the above semantic information and decompose it into sub-goals
to extract corresponding frames, comprehensively covering salient
scenes. Notelt purposely centers on the formats of interactable
notes because notes further augment the prevailing mixed-media
tutorial paradigm by providing flexible presentation without relying
on video as a basis and integrating fluent multimodal information.
This facilitates more effective comprehension of instructional video
content, thereby constructing knowledge. To further improve the
interaction ability, we can integrate audio guidance and conversa-
tional walkthrough for the hands-busy settings (e.g., cooking and
repair). To implement it, we could export the generated notes to
speech via existing text-to-speech techniques [3] to narrate the
content or further integrate it with an LLM-powered Retrieval Aug-
mented Generation (RAG) module to enable conversation [66].

Other potential applications. Besides note generation for in-
structional videos, Notelt offers significant potential for diverse
applications, such as collaborative sessions, entertainment media
analysis, and journalism. For example, structured multimodal notes
of collaborative meetings or workshops could help teams quickly
revisit critical discussions and outcomes, enhancing documentation
efficiency and asynchronous collaboration. Additionally, Notelt can
generate concise summaries of films and TV shows, highlighting
key plot points, themes, and character developments, or create struc-
tured notes from news events, press conferences, and interviews,
facilitating rapid content review and analysis.
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8 CONCLUSION

In this paper, we presented Notelt, a novel system for convert-
ing instructional videos into structured, user-customizable notes.
We began by analyzing the unique characteristics of instructional
videos and the diverse needs of note consumers, which informed
the development of a comprehensive design space for note gener-
ation. Based on this understanding, we introduced an end-to-end
pipeline that extracts hierarchical structure and key multimodal in-
formation from instructional videos to generate high-fidelity notes.
To support practical usage, we also designed an interactive user
interface that allows users to upload videos and tailor the note
format according to their preferences. To evaluate the effective-
ness of our system, we conducted both a technical evaluation and
a comparative user study. The results from these complementary
evaluations demonstrate that Notelt performs effectively in both
content accuracy and user satisfaction. Together with the identified
limitations and future directions, we believe this work opens up a
promising line of research in automatically converting instructional
videos into structured, adaptable learning materials.
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